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A class of McVittie's new nonquadratic solutions is investigated in some detail 
with regard to its physical properties. It is found that decreasing pressure and 
density are not compatible with center regularity for these perfect fluid spheres. 
It is further seen that for "gaseous" spheres (i.e., the density p drops to zero at 
the outer boundary of the sphere together with the pressure p) oscillatory motions 
are not possible. For these "gaseous" models the pressure and the density are 
both positive inside the outer surface, and their respective gradients are negative. 
For the outer "gaseous" shells models are constructed where for a certain time 
interval the pressure is increasing for contracting models. Without any restriction 
with respect to time, for these shell models it found that the density is increasing 
for contracting models, and the adiabatic speed of sound is less than the speed 
of light. It is also found that the trace of the energy-momentum tensor is positive, 
the total mass is negative, and for collapsing shells the rate of change of 
circumference as measured by an observer riding on the shell is an increasing 
function of time. However, all these models have the strange geometric feature 
that the "physical radius" is a decreasing function of comoving radial coordinate. 

1. I N T R O D U C T I O N  

According to Eins te in ' s  general  relativity, all gravi tat ional  fields are 

themselves sources of gravity. As a result, the equat ions  governing gravity 
are nonl inear .  These nonl inear i t ies  pose extremely difficult mathemat ica l  

problems when  one, for example,  wants to construct  exact models  for the 
final, relativistic stage in the evolut ion of a star. A realistic discussion would  
require that  we consider  heat  flow, radiat ion,  neu t r ino  energy t ransport ,  
nuc lear  forces, magnet ic  fields, and  even rotation.  Such highly complicated 

systems may best be invest igated with the help of numer ica l  calculat ion.  
Impor t an t  steps in this direct ion have al ready been  taken (Matsuda  and  
Sato, 1969; Shapiro and  Teukolsky,  1980; Nakamura ,  1981; N a k a m u r a  and  
Sato, 1981, 1982; Petrich et  al., 1985; Stark and  Piran,  1985. 
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However, closed analytic solutions of Einstein's field equations should 
be interesting, since we cannot claim to have reliable knowledge of the 
unusual physical conditions under which matter exists during the last stages 
of gravitational collapse. To obtain simple, closed formulas for the gravita- 
tional potentials, density, pressure, etc., one has to consider situations with 
high symmetry. 

A beautiful method for obtaining exact solutions of the field equations 
for a nonstatic perfect fluid sphere has been developed by McVittie (1967). 
However, McVittie's approach does not necessarily yield models which are 
physically meaningful. This has been the main motivation for my previous 
investigations of some of McVittie's elementary solutions (Knutsen and 
Stabell, 1979; Knutsen, 1982, 1983, 1984a). Recently McVittie (1984) has 
extended his solutions to functions that are not elementary, and I have also 
discussed (Knutsen, 1985c) a particular class of those nonelementary solu- 
tions with regard to its physical properties. 

In this paper another class of nonelementary solutions is examined. 
For this class it is found that center regularity is not compatible with negative 
pressure and density gradients. 

Since the heavenly bodies generally are gaseous spheres where the 
density vanishes at the surface of the sphere, I have previously (Knutsen, 
1984b, 1985a,b) constructed several models of that kind. Models for such 
gaseous spheres are also considered in this paper, and it is found that such 
gaseous spheres may exist with negative pressure and density gradients. For 
the outer layers of these gaseous spheres I have also constructed models 
where even more physical conditions are fulfilled: 

1. The pressure and the density are increasing functions of time for 
contracting spheres. 

2. The adiabatic speed of sound is less than the speed of light. 
3. The energy condition p > 3p holds. 
4. The total mass is negative. 
5. For collapsing mass shells, the rate of change of circumference as 

measured by an observer riding on the spherical shell is an increasing 
function of time. 

It also turns out that the "physical radius" is a decreasing function of 
comoving radial coordinate. This strange geometric feature is of course 
connected with the fact that these models are not regular at the center. 

2. THE McV METRIC 

The metrics McVittie considers for the nonstatic perfect fluid sphere 
are of the form 

ds 2 = y2 dt 2 _ S2( t )e~[  dr2 + f2 (  r)(  d02 + sin 2 0 dq~2)] (1) 
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where y and ~7 are functions of a variable z defined by 

e ~ = O / S  (2) 

where 0 is a function of the comoving coordinate r alone. 
For a perfect fluid the following equation is now obtained from T~ = 0 

(T~ here denotes the energy-momentum tensor): 

y =  1-�89 (3) 

The subscript here denotes differentiation with respect to z. 
Pressure isotropy now yields three differential equations (McVittie, 

1967): 

Q Qf = a (4) 

jo, f,2 ~_~ = b (5t 
f f2 f~ 

y z z + ( a - 3 +  y ) y ~ + [ a + b - 2 - ( a - 3 ) y - y 2 ] y = O  (6) 

where a prime denotes differentiation with respect to r, and a and b are 
constants. 

Using Einstein's equations "in reverse," McVittie also found that the 
density P and the pressure p for the McV metric (1) are given by 

S : e - ~ 3 : _ ~ _ _ 6 ( l _ y ) ~ _ ~  8~'Gp=3 "~ + - ~ -  

- [2b - 2yz + (1 - y ) ( 2 a  - 1 - y ) ]  (7) 

a ~ @  x _ ~ - ( 3 y - 2 )  ~ 
Y 

e -'7 [" 1 - r ' 2  f ' Q '  
S 2 LY-t-~+2(y2-y-Yz) fQ  

Q, 2 

where a dot denotes differentiation with respect to time. 

3. T H E  N O N E L E M E N T A R Y  S O L U T I O N  

The equations (4) and (5) for f and Q were dealt with by McVittie 
(1967), but there only certain elementary solutions of equation (6) were found 
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through the discovery that Yz could be a quadratic function of y. However, 
McVittie (1984) later solved equation (6) under certain conditions in terms 
of elliptic functions. In this paper I will discuss his solution: 

1 - sin/3z 
y2 = 9/32 (1 + sin/3z)(2 - sin/3z) 2 (9) 

e" = e ~+2z (1 +sin/3z) 2 
(2 - sin/3z) 2 (10) 

where 

a =3 (11) 

b = / 3 2 - 1  (12) 

and e is an arbitrary integration constant. 
Inserting these results into equation (6), we find in fact that the only 

valid solution is 

[ l - X \  1/2 1 
Y=-3/3~l----+--X) 2 - X  (13) 

with 

where 

Yz = 3l 32 (X -2)2(1 + X) (14) 

X =sin/3z (15) 

4. I R R E G U L A R I T Y  AT T H E  O R I G I N  

The pressure gradient is most easily found from the equation that 
represents conservation of linear momentum, i.e., T~,~ = 0 (a semicolon 
here denotes covariant differentiation), which yields 

y~Q' 
p ' = -  (p+p) (16) 

yQ 

The general expression for the density gradient has been given in a previous 
paper (Knutsen, 1983). For the present model one finds 

lOe-~ Q, [f,O, Q,2\ 
8 zrGp' S 2 Q(Yz+Y2- /32 ) \ fQ+02  - - "  (17) 
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We observe that Yz > 0 and 

yz-[- y2-  ~2= -t~ 2 

for -1  < X <  1. 

X 3 - 6 X 2 +  1 2 X -  12 

(X-2)2(1 + X )  
<0  (18) 

Demanding that the pressure and the density be positive and their 
respective gradients be negative, one has from (16) and (17) 

Q'/y > 0 (19) 

and 

(Q,/Q)(f,Q,/fQ + Q,z/O 2) < 0 (20) 

However, to have regularity at the origin, it must be the case that the 
"physical radius" 

R = en/2Sf (21) 

vanishes at the center, i.e., f(0) = 0 (Misner and Sharp, 1964). 
Hence, we have 

i f / f>  0 (22) 

If we now have Q'> 0, this immediately yields 

( O'/ O)(f'O'/fO + O,2/ Q2) > 0 (23) 

in contradiction to inequality (20). 
Hence, let us consider Q'< 0. Inequalities (19) and (20) now yield 

(O'/O +if/f) < 0 (24) 

and 

y < 0 (25) 

Differentiating equation (21), we find, however, 

R' = R[ (O ' /O  +if/f) - yO'/Q] (26) 

hence, we have R' < 0, which is not compatible with vanishing of the positive 
function R at the origin. The following statement has thus been proved: 
Regularity at the center is not compatible with negative pressure and density 
gradients. 

5. ON THE POSSIBILITY OF PULSATIONS 

We have previously (Knutsen and Stabell (1979) given a method for 
obtaining the scale function S from the junction condition that the internal 
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solution should be fitted to an external vacuum Schwarzschild solution, i.e., 
the pressure p drops to zero at the boundary of the fluid, sphere. Applying 
that method, we obtain after some straightforward calculations 

$2 = e - ,S  2 \ Y - ~  / 

x A - ~ i - ~  Y------Z- (Y-2)~(Y+I) + V-~3  (27) 

where 

[ 1 - P  2 f ' O '  0 '2\  
A = 3 ~ - - - y  + 2 f-'~- +'~-g) b 

6 ~ { f ' Q ' +  Q,2,~ 

(28) 

(29) 

(30) 

D is an arbitrary integration constant and 

Y =  Xb (31) 

Henceforth, boundary values will be denoted by the subscript b. I have also 
followed McVittie and Stabell (1968) and without loss of generality put 
Qb = 1. 

The global motion of the fluid sphere may be studied using equation 
(27). In addition, this equation also yields a consistency relation which 
must be fulfilled, i.e., $2__ 0. 

Applying equations (13), (16), and (t7), we find that we should demand 

f Q  Q + >0 (32) 

to arrive at a physically reasonable model. 
Hence, we must demand 

B > o  (33) 

Necessary oscillatory conditions are then that the function within square 
brackets on the right-hand side of equation (27), call it E(Y),  has at least 
two positive roots, and that E > 0  between these two roots. It is thus 
immediately seen that pulsations are not possible if A > 0 and D < 0. 
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However, these conditions arc fulfilled if we choose A, B, C, and D 
such that 

E ( - 1 )  <0 ,  E ( 0 ) > 0 ,  E ( 1 ) < 0  (34) 

i.e., we choose A, B, C, and D in the following way: 

D<�89 (35) 

D> A (36) 

and 

D > I A + 2 C  (37) 

Hence, we first choose the positive quantities B and C. Then we choose 

__ 2 /~ __ 1 1 / ~ 3  ~ '  36 ~...~ ~ A<�89 (38) 

and at last we choose 

Max(A, �89 C) < D < �89 1C (39) 

It should be emphasized, however, that these conditions are not sufficient 
to have a physically acceptable oscillatory model. 

6. "GASEOUS" SPHERES 

From now on we demand that the sphere be "gaseous," i.e., we demand 

Pb ---- 0 (40) 

From equation (7) the following equation is now obtained for the scale 
function S: 

S2=e-~s2(Y-2)2[ 1 (11_~y)'/2 1 1 2y2 -14Y+l l  ] 
\ - ~ - - ~ /  A - B - -  ~ (41) 

Y -  2 27 ( Y -  2) 2 

Comparing equations (27) and (41), it is seen that for "gaseous" spheres 
the arbitrary integration constant D take the following value: 

3 Q2 j b (42) 

That the matching condition Pb ~ 0 is fulfilled without more ado for gaseous 
spheres is of  course no surprise, since the equation that represents conserva- 
tion of energy, i.e., T4~;, = 0, yields 

.6 = -3y'S/ S( p + p) (43) 
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7. NONEXISTENCE OF PULSATING "GASEOUS" SPHERES 

I now prove that oscillatory motions are forbidden for these "gaseous" 
spheres. Differentiating the function within square brackets on the right- 
hand side of equation (41) gives 

d [ 1 A _  B(~.._~)I-Y 1 / 2 _ _ + _ _ C 1  1 2 y 2 - 1 4 Y + l l ]  
d Y  Y - 2  27 ( Y - 2 )  2 

(y_�89 2 I + Y  
= - B  (1 - Y2)1/2(2- Y)z(1 + Y) 9 C ' (2-  y)3 (44) 

which is seen to be negative when we remember inequality (33). 
Hence, equation (41) can have at most one root 

Yoe (-1, 1) 

Strictly speaking, this could be enough to have an oscillatory model, since 
Y =-sin( /3 In S) could take the value Yo for two different values of S. 
However, then there would exist a moment when Y = - I  or Y =  1. The 
situation Y = - 1  is forbidden because the metric would then be singular. 
For Y =  1 it is seen from equation (44) that equation (41) would then have 
no root at all. 

Hence, pulsations are not possible. 

8. INTEGRATION OF ISOTROPY EQUATIONS (4) AND (5) 

Equation (4) is immediately integrated by quadrature to give 

f = AI(Q'/Q3) (45) 

where A1 is an arbitrary integration constant. 
Following McVittie (1967), let us introduce a new radial coordinate 

q by 

q = -�89 -2 (46) 

which yields 

dq/dr = f  (47) 

Equation (5) may now be written 

1 /32-1  f 
"~Jqq + f 3 -  4 q2 (48) 

Following McVittie (1967) once more, equation (48) is integrated by the 
double substitution 

q = e w, f =  eW/2v(w) (49) 

I will just discuss models for which q is restricted to take positive values. 
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Hence, it follows from equations (21), (45), and (46) that only models with 
Q'< 0 will be taken into consideration. 

From equation (49) we find 

1 (d2v iv) (50) 
fqq -- e-~w/2 \-~w2-- ~ 

When this is inserted into equation (48) and the integration is performed, 
we get 

case 1: f 2 = 2 q  ( l+~q~) (51) 
/J 

o r  

q ( l+Sq  -~) (52) case 2: f2 = 2 

Here 6 is an arbitrary integration constant, and suitable choice has been 
made of another integration constant. We also have 

Q = (qb/q) 1/2 (53) 

We further find 

1 - f  '2 ~-2 JPO" +-~2 = 0  ,2 ~(fl /2q)(6qt3-1) (easel) (54) 
f z  fQ  Q I.(fl/2q)(6q -~ - 1) (case 2) 

and 

f ,Q, Q,2 [_�89162 (easel)  
- ~  +--Q--~ = [�89 -~-'  (case 2) 

(55) 

Case 1: Let us define 

V = ~/qb, G = 8q~ ~ (56) 

and obtain 

A = 3 F ( G - 1 ) ,  B=3FG,  C = 9 F ( G + I )  (57) 

For this case B and C are positiv e quantities, and the oscillatory condition 
(38) is also fulfilled if we choose 

F > 0 ,  G >  1/59 (58) 

o r  

F < 0 ,  G <  -7 /3  (59) 

Case 2: The analysis is very much the same as in the previous case, 
but we put G = ~q~ and have B = -3FG. We find that we should take 

F > 0 ,  - 1 <  G < - l / 1 3  (60) 

Observe, however, that the conditions (58) and (60) are not compatible 
with having a negative density gradient. 
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9. D E N S I T Y ,  P R E S S U R E ,  A N D  P R E S S U R E  G R A D I E N T  

For this model the density p is given by 

8r = lib - H (61) 

where H is defined in the following way: 

3 [ 1-fa+2f'Q'+Q'2"~[X-2"~2 

f O  0 2 - x  l - X  +Q~ + ~ 

~2 Q,2 2X 2_ 14X + 11 (62) 

+O--~ O 2 ( X + l y  

Further, one finds (after some calculation) that the pressure p is given by 

= [ l - X \  1/2 1 
-8r ~'i'--~) 2 - X  p 

{ (  1-f'2 f'O' 0'2\ 
= f2 ~-2~ " +--~-T / fQ Q ]b 

[ 2 ( 1 - Y ~ ' / 2  Y - 2  3 ( 1 - X ~  1/2 ( Y - 2 )  2 ] 
x [  \ I + Y ]  ( Y + I )  2 \ I + X ]  ( X - 2 ) ( Y +  1) 2 

1 - f  a f 'O' O'2"~(1-X~ 1/2 X - 2  
+ Q2 

f[f ,O, O,2\ [ y e _ 7 y +  7 
+2fl ~ -~+- -Q-7 )b  L ( y + l )  3 

~/2 Y - 2  1 + X)(1 + - ~ I Y +  1)2A 

1 [f'Q' Q,2\ X 2 + 2 X _ 2 1  

, 2 Y - 2  

2 y 2 - 1 4 Y + l l  1 
q ( Y+ 1)2(2- X) (X  + 1) (1 - X2) ~/2 

+~-~ ( 2 _ X ) ( X + I )  3 (63) 

From this equation it is easily seen that Pb ----- 0. 
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Using equation (16) we find that the pressure gradient may be written 

YzO' ( 1 + X)1/2 
8 rrGe ~ p' = - 2  yQ k l - X ]  (X--2)(I--Ib)  (64) 

where I is given by 

1 = 1 [ (  1 - f  '2 f 'O'  O ' 2 • ( 1 - X )  U2 2 - X  
Q2 f2 t -2~-~-+-~)  ~ (X + 1) 2 

i f ,  Q, Q,2\ X 2 _ 7 X + 7  Qa 2 - X  ] 
-t- f l t  ~-~-- q- --Q--f) ( x +  1)3 q- 1~2 Q2 (~-~-i32- ~ (65) 

To have a model with negative pressure gradient one would like to 
prove (I  - Ib ) < O. 

Further, it is immediately seen from equations (17) and (55) that a 
proper choice of the constant 6 yields models with a negative density gradient. 

Hence, for our gaseous models this choice yields models where the 
density is positive inside the boundary of  the sphere. 

10. "GASEOUS" MODELS WITH POSITIVE PRESSURE 

As usual, the main difficulty is to show that the pressure is positive 
throughout the sphere. From the complicated equation (63) the reader may 
get the feeling that this is a rather involved task. From equation (16) and 
the matching condition Pb =- O, it is seen that for the present "gaseous" 
models this is equivalent to proving that the pressure gradient is negative 
throughout the sphere. I now show that the analysis is miraculously simple. 

Differentiating equation (65), we in fact obtain 

and 

case 1: f2 : -2  q (1 + t~q~ 

I ' -  5 f126fqr3_ 1 ( Y - 2 )  2 
4 qb (V+l)  a(1-Y2)'/2>O (66) 

case 2: f2=2--q (1 + 6q-r 

I' 5 ~26f -~-1 ( Y - 2 )  2 (1 -  y2)1/2>0 (67) 
- 4  qb q ( Y + I )  4 

Hence, the pressure gradient is negative and the pressure is positive throughout 
the "gaseous" sphere. 
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11. MODELS FOR SPHERICAL GAS SHELLS 

Let us now investigate the outer layers of these time-dependent 
"gaseous" spheres. 

Differentiating equation (16) once more, we obtain 

p,~= [yzQ"~ , 
- ~ - ~ ]  bob (68) 

Since we have p~, < 0, the pressure is thus a convex function for the layers 
close to the boundary. We also have p~, = 0 and this yields that the energy 
condition p > 3p is fulfilled for the boundary layers. 

The formula for the mass function for the McV metric has been given 
previously (Knutsen, 1985b). The total mass M is given by 

20 / f '  Q'\-~ 
M=--~-~Gp'bR3(--f+--~) b (69) 

The total mass is thus seen to be negative. 

11.1. Rate of Change of Circumference 

Differentiating equation (21), we find 

= en/2fyS (70) 

McVittie (1967) and Nariai (1968) take VM, where 

v~ = e~f2S 2 (71) 

to be the matter velocity. However, this "velocity" is in fact the rate of 
change of 1/2~r time the circumference as measured by an observer riding 
in a shell of matter. From equation (41) we now obtain 

d 2 
aS (vM)b 

~ [ f ~  6fl l--~ --~/[f'Q' Q,2\ (y_�89 y2)1/2 
+V /b(1-- y2),/2(y_2)2(1+ y) 

b (2- y)3j (72) 

Recalling equations (13) and (74), we can now conclude that for expanding 
spheres the rate of change of circumference is decreasing, and for collapsing 
spheres it is increasing, with respect to time. 
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11.2. Time Development of Density and Pressure 

From equations (43) and (70) we can immediately conclude that the 
density is increasing for contracting spheres and is decreasing for expanding 
spheres. 

To show that there exists a certain time interval such that/~(r = rb) < 0 
for expanding models, it is enough to show that we have/~ < 0. Differentiat- 
ing equation (16) twice, we find 

y 9 

(O'~ zS [  -8Y3+21Yz-24Y+10 
= \ -~ ] b fl -~ (-~-S_ y---~-~l -- ~- ~ ] b p 'b (73) 

From equation (73) it is easily seen that p[ < 0 for negative values of Y, 
i.e., Ye <-1, 0]. Recalling equations (2) and (15), we see that S should be 
restricted to take values in the interval [In Qcenter, ~-/2/3). 

11.3. Speed of Sound versus Speed of Light 

The adiabatic speed of sound vs for a nonstatic sphere is given by 
(Knutsen, 1984b) 

v2= p/  ti (74) 

To see that this speed is less than the speed of light, i.e., 

(v,~)b < 1 (75) 

it is enough to prove that the following relation holds for expanding models: 

Pb < lSb (76) 

We now obtain 

(16'- tJ')b = 3yb'~ Pb (77) 

Recalling equation (70), we can thus conclude that the adiabatic speed of 
sound is less than the speed of light. 

12. CONCLUSION 

A particular model of McVittie's nonelementary solutions of an isotropy 
equation has been investigated. It is found that the general expressions for 
pressure, density, etc., are quite complicated. However, this class of solutions 
certainly contains models for gaseous spheres which are quite acceptable 
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from a physical point of view, i.e., the pressure and the density are positive, 
their respective gradients are negative, etc. The main objection is that these 
models have to be irregular at the origin, and this center irregularity yields 
a strange geometric feature: the "physical radius" is a decreasing function 
of comoving radial coordinate. But as long as an accepted theory for 
quantum gravity does not exist, one should not discard these models as 
physically meaningless. There may exist extreme astrophysical conditions 
where these models would be quite interesting, for example, during the last 
stages of gravitational collapse. 

Finally, I emphasize the result that the "gaseous" models cannot 
describe pulsating spheres. 
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